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63, 79, 94, and ii0 percent of the nominal torque of 71.8 N-m

(635 Ib-in.)). The strain gage signals were transmitted through a

slip-ringassembly to constant-currentsignalconditioners.The
dynamic straindata were digitizedby a digitaldata acquisition

system, with sample ratesof 50 kHz per channel at the 2000-,4000-,

and 6000-rpm speeds and 20 kHz at the 800-rpm speed. A once-per-

revolutiontiming pulseprovided an accurateangularpositionrefer-

ence fordigitalresamplingby linearinterpolation.The resampled

data were then synchronouslyaveraged overseveralsuccessiverevo-
lutionsto reducenoiseeffects,such as the torquefluctuationfrom
the drivebelt.

The averaged straindata valueswere convertedto normal tooth

force(dynamic toothload)by usingcalibrationdata measured
under staticconditions.The calibrationapparatus and data reduc-

tionproceduresare more fullydescribedin Rebbechi et al.(1991)

and Oswald et al.(1991).

ANALYTICAL MODEL

ARL__DYN (Rebbechi, 1991), Fig. 4, considers both torsional

and lateral displacements of the gears and can accommodate vari-

able numbers of teeth in contact. The equations of motion were

derived by considering dynamic equilibrium for moments and forces
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(a) Layout.
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Figure 1 .--NASA gear noise rig.

acting on the components of the system. Moments are taken about

the axes of rotation. The mode of deflection of the gear teeth is
taken as rotation about a point in the gear wheel at one tooth

height below the base circle (see Rebbechl, 1983). The tooth stiff-

ness, which varies with load position, is calculated according to a

deflection equation in Merritt (1971). Forces acting through gear

centers are resolved into coordinates xz, Yl, x2, Y:¢" This results in
[8+2(t-I)1 equations of motion, where t is the number of tooth
pairs in contact. The set of equations can be reduced to [7+(t-1)]

equations by invoking the kinematic constraint equations for the

gears in mesh.

To improve numerical accuracy, the equations involving gear

body rotation #1,#2 were transformed to new coordinates e z = (01

+ n02)/2 (average rotation of gear pair) and O 2 = (0] - nO2 + c)/2
(relative rotation of gear pair), where 81 and 82 represent the rota-
tion of the gear wheels, n is the gear ratio, and c is a constant used

to make O2 = 0 if there are no errors. The new equations relate to
(1) the absolute rotation, and (2) the relative rotation of the gear
wheels. The gear dynamics code assembles the equations of motion

in matrix form as shown in equation (l):
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Figure 2.--Test gear profile traces.

TABLE L--TEST GEAR PARAMETERS

Gear type ............. Standard involute; full-depth tooth
Number of teeth ............................... 28

Module, mm (diametral pitch, in. -]) ........... 3.175 (8)

Face width, mm (in.) ...................... 6.35 (0.25)

Pressure angle, deg ............................. 20
Theoretical contact ratio ........................ 1.64

Driver modification amount, mm (in.) ........ 0.023 (0.0009)

Driven modification amount, mm (in.) ....... 0.025 (0.0010)
Driver modification start, deg ...................... 24

Driven modification start, deg ..................... 24

Tooth-root radius, mm (in.) ................ 1.35 (0.053)

Gear quality ......................... AGMA class 13
Nominal (100 percent) torque, N-m (in.-lb) .... 71.77 (635.25)
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Figure 3.--Strain gage installation and location on test gear.

where M, C, and K are square coefficient matrices representing the

mass (inertia), damping, and stiffnesses, and X and F are vectors of

displacements and forces (torques), respectively. The order (number

of degrees of freedom) of equation (i) is (6+t), where t is the num-

ber of tooth pairs in contact. For low-contact.ratio gears, t nor-

really varies between 1 and 2. If tooth separation (tooth bounce)

occurs, t may also be zero. Therefore, the degrees of freedom vary

91 rotation of gear body 1

62 rotation of gear body 2

03_ 6 rotation of gear teeth

x 1 lateral displacement of gear
wheel 1, transverse direction

Yl lateral displacement of gear
wheel 1, radial direction

x 2 lateral displacement of gear
wheel 2, transverse direction

Y2 lateral displacement of gear

wheel 2, radial direction

Y2

x2

02

x I

Figure 4.--Gear dynamics model.

between 6, 7, and 8, depending on whether there are zero, one, or

two pairs of teeth in contact. The M_ C, and K matrices contain

a number of nonlinear terms owing to the nonlinear kinematic
constraints.

The dynamics code allows prescription of such features as profile

errors and modification, shaft deflection (including interaction

effects with conditions of tooth contact), tooth deflection (including

resulting change of contact position and common normal direction),

and tooth sliding friction. The friction coefficient for the gear mesh

(the friction force divided by the normal force) was taken to be 0.06.

Values up to 0.10 were tried but made little difference in the results.

Material damping in the gear tooth was modeled a_ viscous damping

and expressed as the damping ratio (fraction of critical damping).

Gear tooth material damping produces a significant effect. A

damping ratio of 0.10 gave the best correlation with experimental

data. The same damping ratio (0.10) was assumed for lateral

bending of the shaft. The torsional shaft damping coefficient was

2.3x10 -s N-m/(rad/sec). Changing the shaft damping values had

little effect.

For input and output boundary conditions, steady external

torques were assumed. The code solves the equations of motion

with a Newmark-Beta numerical integration technique. The profile

modification measured for the test gears (Fig. 2) was specified for

the analysis.



RESULTS AND DISCUSSION

Dynamic tooth loads computed from the strain gage readings

were compared with the prcdictions of ARL_DYN for dynamic

tooth force. Initial runs of the computer model, although producing

good results at high loads (with an average error in maximum tooth

load of 5 percent), did not successfully characterise dynamic

behaviour at light loads and high speeds. An example is shown in
Fig. 5, where at the roll angle of 21 °, the predicted value is about
3.5 times the measured value.
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Figure 5.--Comparison between initial prediction
of tooth force and measured result at 4000 rpm
and 31 -percent torque.

The experimental results were critically examined to evaluate

reasons for the disagreement at light loads between analysis and

experiment. A segment of these results is shown in Fig. 6. Here the
dynamic tension strains ai 31:percent torque are plotted for four

speeds in the range 800 to 6000 rpm. Each curve has three parts:

(1) a region where the strain increases rapidly as the load is taken

up by the tooth of interest; (2) a region of slowly declining static

strain (with dynamic effect superimposed) where the entire load is

carried by a single tooth pair; this region lles approximately

between points A and B in Fig. 6; and (3) a region where the load is

passed to the following tooth. It can be seen that the load-sharlng

regions (1 and 3), and thus the effective contact ratio, were virtually
unaffected by speed. Speed had little effect on the dynamic load

until point A in Fig. 6 was reached. The higher speeds show an

=overshoot." As this overshoot changed only in magnitude as the

speed increased, and did not change in angular position, it most

likely resulted from a predominantly inertial effect, and not from a

combined mass/stiffness (resonance) effect, where we would expect a

phase shift.

The approximate displacement error for this gear tooth profile

when lightly loaded is as described by Munro (1989) and is sketched

in Fig. 7. Munro terms this type of profile correction as =long

profile relief, _ where the relief extends from be]__owthe_high point of

single-tooth contact to the tooth tip. It appears that the overshoot
in response evident in Fig. 6 arose from the inability of the gear pair

to instantaneously adapt to the "separating mode" (where the

driven gear leads the driving gear). As the gear speed increased_
this effect became more marked. The dominant factors here are

probably the gear wheel inertia, which relates to speed through the
separating acceleration, and the external torque, which acts to

reduce dynamic overshoot.

The effect of overshoot or tooth separation was reproduced in

the computer model. Initially, the value used for gear wheel inertia
did not include the inertlas of the gear hub, shaft, spacers, or coup-

lings. When these parts were accounted for, the inertia value in-
creased by a factor of 4. The tooth forces for the "llght" and the

=standard _ (corrected) gears are compared in Fig. 8. The measured
tooth forcc data are also showtt for comparison. This result closely

accords with and confirms the hypothesis of Munro (1989), who des-

cribed the tendency of gears with long relief to separate at light loads.

The influence of shaft deflection was also considered. Owing to

the construction of this test gearbox (Fig. 1), where the gears are

centrally mounted on relatively long supporting shafts, it was at one

stage thought that lateral deflection may be a cause of the tooth

bounce observed when light loads are combined with high speeds.

Dynamic tooth strains at 4000 rpm are compared for seven torque

levels in Fig. 9. The effect of tooth bounce can be seen in the curve

for 16-percent torque. Here, the force vanishes around the pitch
point, indicating that the teeth have lost contact. It is interesting

to note that the tooth bounce shown here is not unique to the

NASA gear noise rig but is also seen in the results of other

researchers such as Tobe et al. (1977). Figure 10 compares the pre-

dicted dynamic tooth force for the normal gears with a case where
the shaft stiffness is increased by a factor of 4. There is little

difference in the character of these curves.

The shaft deflection in the radial direction (along the line

joining the gear centers) for both normal and stiff shafts is plotted

in Fig. 11. As expected, the mean deflection was less when the stiff-

ness was increased, but surprisingly the dynamic displacement

increased. This increase in dynamic displacement for a stiffer shaft

was apparently a resonance effect (note the phase shift of approxi-

mately 90 ° between the curves). This indicates that shaft flexi-

bility is not likely to be a contributing factor to the tooth bounce.

Dynamic load predictions for the model with the normal

(heavier) gear wheels are compared with measured values in Fig. 12.

Agreement is reasonable except in Fig. 12(c), at 6000 rpm and

31-percent torque. The prediction shows tooth separation at this

condition, but tooth separation was actually recorded at the lower
speed of 4000 rpm and the lighter torque of 16 percent (see Fig. 9).
It is evident from these results that further refinement of the model

is necessary to produce consistent results across the whole speed

range. It is probable that the introduction of additional torsional

degrees of freedom, representing the motor and the dynamometer,

would aid in this regard, so that the dynamic load increments at

different speeds could be magnified or reduced. The analysis was

particularly successful in predicting the response in the load-sharing

region (roll angle greater than 23 ° or less than 19°).

The peak values of the dynamic load from both measured and

predicted data are compared at four speeds (800, 2000, 4000, and

6000 rpm) for the highest torque level (ll0 percent) in Fig. 13. The
predicted and measured data show the same trend (i.e., a minimum

at about 4000 rpm}, and the values agree within an average error of
5 percent. The static load line drawn in Fig. 13 is calculated from

the external applied torque of 110 percent. The resulting force of

1894 N (426 lb) is computed from the torque divided by the base
circle radius.
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CONCLUSIONS

Experimental data for gear tooth dynamic load were compared

with predictions from the Australian Defence Science and Tech-

nology Organisation Aeronautical Research Laboratory's gear dyna-

mics code. The effects of lateral shaft stiffness and gear body inertia

were examined by using the computer model to improve predictions

of gear tooth bounce as observed at light loads and high speeds.

The following results were obtained:

(1) Peak dynamic load predictions agreed with measured data

within an average error of 5 percent for ll0-percent torque and

speeds ranging between 800 and 6000 rpm.

(2) Tooth separation (or bounce) was observed in the experi-

mental data for light-load, hlgh-speed operation. The computer

model predicted tooth separation under slightly different conditions.

The model shows that this phenomenon is primarily dependent on

the operating conditions of speed and load and the physical param-

eters of tooth profile and gear body inertia. An increase in gear

wheel inertia increases the likelihood of tooth separation.

(3) The analytical model was successful in simulating the

degree of load sharing between gear teeth in the multiple-tooth-

contact region.
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